
© Copyright Ian D. Romanick 2008

23-July-2008

VGP393 – Week 2

⇨ Agenda:
­ Synchronization

­ Critical sections
­ Deadlock
­ Synchronization primitives

­ Win32 / MFC threading API, part 1
­ Creating / destroying threads
­ Events
­ Semaphores
­ Mutexes
­ Critical sections

­ Assignment #1

© Copyright Ian D. Romanick 2008

23-July-2008

Synchronization

⇨ Consider the following linked-list insertion code:
void insert_after(node *pre, node *next) {
 next­>next = pre­>next;
 next­>prev = pre;
 next­>next­>prev = next;
 pre­>next = next;
}

­ What happens if two threads try to insert nodes after
the same pre at the “same” time?

­ Almost certainly the list will be corrupted
­ Timing sensitive bugs like this is called race condition

⇨ By synchronizing access to shared data, race
conditions can be avoided

© Copyright Ian D. Romanick 2008

23-July-2008

Critical Sections

⇨ “...a critical section is a piece of code that
accesses a shared resource...that must not be
concurrently accessed by more than one thread
of execution.1”

­ In other words, the critical section is the area around
which synchronization is required

­ We generally associate the synchronization with the
data, not the the code

1 http://en.wikipedia.org/wiki/Critical_section

http://en.wikipedia.org/wiki/Critical_section

© Copyright Ian D. Romanick 2008

23-July-2008

Synchronization Primitives

⇨ Numerous primitives with slightly different
semantics have been developed over the years

­ Counting semaphore
­ Locks

­ Spin-lock
­ Mutex
­ Recursive locks
­ Read-write locks

­ Condition variables

© Copyright Ian D. Romanick 2008

23-July-2008

Counting Semaphore

⇨ Special counter that, when > 0 allows access to
the critical section

­ Presented by Dijkstra in 1968, it is the original
synchronization primitive

⇨ Semaphore has three functions
­ init – sets the initial count, usually 0 or 1

­ v – increases the count and wakes sleepers
­ From the Dutch verhogen (increase)
­ Sometimes called up

­ p – decreases count and sleeps if result < 0
­ From the Dutch probeer te verlagen (try to decrease)
­ Sometimes called down

© Copyright Ian D. Romanick 2008

23-July-2008

Counting Semaphore

⇨ Implementation of down from Linux 2.6.25.9:
 lock decl [%ebx]
 jns 2
 lea [%ebx], %eax
 call __down_failed
2:

lock prefix ensures that
fetching the value from
memory, decrementing, and
writing back happen atomically

Puts thread on the sleep queue

© Copyright Ian D. Romanick 2008

23-July-2008

Counting Semaphore

⇨ Implementation of down from Linux 2.6.25.9:
 lock incr [%ebx]
 jg 2
 lea [%ebx], %eax
 call __up_wakeup
2:

lock prefix ensures that
fetching the value from
memory, incrementing, and
writing back happen atomically

Wakes up next waiting thread

© Copyright Ian D. Romanick 2008

23-July-2008

Lock

⇨ A lock is essentially a binary semaphore
­ A lock is either locked (has a count ≤ zero) or

unlocked (has a count of one)
­ Lock operations acquire and release are

analogous to the semaphore operations p ad v
­ Except that releasing a lock with a count of one is an error

­ Also called a mutex
­ Short for mutual exclusion

© Copyright Ian D. Romanick 2008

23-July-2008

Spin-lock

⇨ Very simple type of lock that doesn't sleep
­ Instead of sleeping, it loops testing the

variable...waiting for it to change
­ Simple spin-lock implementation:

 movl %eax, $1
1: lock xchg %eax, [%ebx]
 test %eax, %eax
 jnz 1

­ Doesn't work well on uniprocessor systems
­ Unless the lock is waiting for something to happen in an

interrupt

­ Hurts performance if the expected wait time is more
than 50% of the per-thread time slice

© Copyright Ian D. Romanick 2008

23-July-2008

Recursive Lock

⇨ What happens with a simple mutex or spin-lock
in the following code?
void recursive_func(...)
{
 acquire(l);
 ...
 recursive_func(...);
 ...
 release(l);
}

© Copyright Ian D. Romanick 2008

23-July-2008

Recursive Lock

⇨ What happens with a simple mutex or spin-lock
in the following code?
void recursive_func(...)
{
 acquire(l);
 ...
 recursive_func(...);
 ...
 release(l);
}

First recursive call will
block here forever

© Copyright Ian D. Romanick 2008

23-July-2008

Recursive Lock

⇨ Allows the lock's holder to acquire the lock
repeatedly

­ Each acquire must have a matching release
­ May be more expensive than non-recursive locking

primitive

© Copyright Ian D. Romanick 2008

23-July-2008

Read-Write Lock

⇨ Allows either a single writer or multiple readers
access to the critical section

­ Called a shared-exclusive lock in distributed comput-
ing because the lock is either held in shared mode
(read) or in exclusive mode (write)

⇨ Difficult to implement well
­ Obvious implementation may trivially starve either

writers (most common) or readers
­ This makes them much more expensive in the

presence of reader / writer contention

© Copyright Ian D. Romanick 2008

23-July-2008

Condition Variables

⇨ Condition variables combine the availability of a
lock and the existence of some condition

­ Three operations exist for condition variables:
­ wait – releases lock, waits until condition is signaled,

returns with lock held
­ signal – wakes up one waiting thread, returns with lock

held
­ broadcast – wakes up all waiting threads, returns with lock

held

© Copyright Ian D. Romanick 2008

23-July-2008

Condition Variables

⇨ How is this useful?
­ One thread produces data items that will be used by

other threads
­ Consumer threads want to sleep until data is ready
­ Producer threads signal consumers when data is ready

­ Producers may also want to sleep if the communication buffer is full

© Copyright Ian D. Romanick 2008

23-July-2008

Condition Variables

void producer() {
 while (1) {
 acquire(lock);
 while (data_ready) {
 wait(cond, lock);
 }
 /* Do something to generate data */
 data_ready = true;
 signal(cond);
 release(lock);
 }
}

void consumer() {
 while (1) {
 acquire(lock);
 while (!data_ready) {
 wait(cond, lock);
 }
 /* Do something with the data */
 data_ready = false;
 signal(cond);
 release(lock);
 }
}

© Copyright Ian D. Romanick 2008

23-July-2008

Condition Variables

⇨ How can a condition variable be implemented?
­ Multiple threads need to wait
­ Either one or many threads need to be woken at once

­ Almost like multiple threads need to be in a critical section...

⇨ Simplest implementation combines a lock and a
semaphore

­ Lock controls a counter for the number of waiting
threads

­ Waiting threads queue on the semaphore

© Copyright Ian D. Romanick 2008

23-July-2008

Condition Variables

void wait(cond *cv, lock *l) {
 acquire(cv­>lock);
 cv­>waiting++;
 release(cv­>lock);

 release(l);
 down(cv­>sem);
 acquire(l);
}

void broadcast(cond *cv) {
 acquire(cv­>lock);
 while (cv­>waiting) {
 up(cv­>sem);
 }

 cv­>waiting = 0;
 release(cv­>lock);
}

© Copyright Ian D. Romanick 2008

23-July-2008

Fence

⇨ Causes all memory operations issued before the
fence to complete before any memory operations
issued after the fence

­ May be called a memory barrier or a memory fence
­ Out-of-order architectures can reorder independent

reads and writes

⇨ Don't usually need to issues fences by hand
­ Synchronization primitives imply fences and prevent

the compiler from reordering memory accesses
around the synchronization primitive

⇨ Wikipedia has good info on the subject:
http://en.wikipedia.org/wiki/Memory_barrier

http://en.wikipedia.org/wiki/Memory_barrier

© Copyright Ian D. Romanick 2008

23-July-2008

Barrier

⇨ All threads block at a barrier until a certain
number of threads have reached the barrier

­ The converse of a counting semaphore
­ Useful for certain parallel structures that we'll examine

later...

© Copyright Ian D. Romanick 2008

23-July-2008

Multi-threading on Win32

⇨ Two different interfaces exist
­ Low-level win32 threads
­ Slightly higher-level MFC thread objects

­ Really just wrapper classes around win32 threads

⇨ We'll use low-level win32 threads this term
­ MFC won't work with SDL, and some of the

assignments use SDL

© Copyright Ian D. Romanick 2008

23-July-2008

Thread Function

⇨ Each thread starts with a function:
unsigned __stdcall my_thread_func(void *param);

­ This function is essentially the per-thread main

­ param points to arbitrary data passed in by the
thread's creator

© Copyright Ian D. Romanick 2008

23-July-2008

Thread Creation

⇨ Several ways to create a new thread
HANDLE CreateThread(

LPSECURTY_ATTRIBUTES thread_attributes,
SIZE_T stack_size,
LPTHREAD_START_ROUTINE start,
void *parameter,
unsigned creation_flags,
unsigned *thread_id);

© Copyright Ian D. Romanick 2008

23-July-2008

Thread Creation

⇨ Several ways to create a new thread
uintptr_t _beginthreadex(

void *security,
unsigned stack_size,
unsigned start(void *),
void *parameter,
unsigned creation_flags,
unsigned *thread_id);

­ Parameters have same meaning as CreateThread

­ start function must be delcared __stdcall
­ Also configures C run-time support

­ Allows thread to use printf, for example

© Copyright Ian D. Romanick 2008

23-July-2008

Thread Creation

⇨ Several ways to create a new thread
uintptr_t _beginthread(

void start(void *),
unsigned stack_size,
void *parameter);

­ Much like _beginthreadex, but assume default
values for most parameters

­ start function must be delcared __cdecl
­ Thread also cannot return a value

© Copyright Ian D. Romanick 2008

23-July-2008

Thread Termination

⇨ Each thread can terminate itself in several ways
­ Simply return from the start function passed to the

thread creation routine
­ Call ExitThread

­ Releases thread resources, cancels pending file I/O, etc.
­ Implicitly called by returning
­ Kills the thread without calling destructors, etc.

­ Call _endthread / _endthreadex
­ Works like ExitThread

­ Invokes destructors before terminating

© Copyright Ian D. Romanick 2008

23-July-2008

Thread Termination

⇨ Creating thread can force a thread to die by
calling TerminateThread

­ Really dangerous!
­ Thread has no chance to clean-up before dying

­ Cannot free memory
­ Cannot close files
­ Cannot release synchronizations objects!!!

© Copyright Ian D. Romanick 2008

23-July-2008

Waiting for Threads

⇨ It is possible, and useful, sometimes to wait for a
thread to terminate
unsigned WaitForSingleObject(

HANDLE hHandle,
unsigned milliseconds);

­ Returns WAIT_OBJECT_0 on success

­ WAIT_TIMEOUT means the nothing happend in the
allotted time

­ WAIT_FAILED means an error occured

­ WAIT_ABANDONED means the thread owning a mutex
terminated before releasing the mutex

© Copyright Ian D. Romanick 2008

23-July-2008

Waiting for Threads

⇨ It is possible, and useful, sometimes to wait for a
thread to terminate
unsigned WaitForMultipleObjects(

unsigned count,
const HANDLE *handles,
BOOL wait_all
unsigned milliseconds);

­ Returns WAIT_OBJECT_0 + n on success
­ n is the element of handles that had something happen

­ Other return codes the same as
WaitForSingleObject

© Copyright Ian D. Romanick 2008

23-July-2008

Events

⇨ Sends a signal to a thread
­ Event state change with SetEvent and ResetEvent
­ Waiting thread is notified when the event changes

from reset to set state
­ This means the thread should reset manual_reset events

after receiving

HANDLE CreateEvent(
LPSECURTY_ATTRIBUTES thread_attributes,
BOOL manual_reset
BOOL initial_state
LPCTSTR name);

BOOL SetEvent(HANDLE event);
BOOL ResetEvent(HANDLE event);

© Copyright Ian D. Romanick 2008

23-July-2008

Semaphores

⇨ Dijkstra-style counting semaphore
HANDLE CreateSemaphore(

LPSECURTY_ATTRIBUTES thread_attributes,
unsigned initial_count,
unsigned maximum_count,
LPCTSTR name);

­ Semaphores are named, and can be opened in other
processes

HANDLE OpenSemaphore(
unsigned desired_access,
BOOL inherit_handle,
LPCTSTR name);

© Copyright Ian D. Romanick 2008

23-July-2008

Semaphores

⇨ Semaphores have handles, and re-use
WaitForSingleObject and
WaitForMultipleObjects

­ A successful wait is a “p” operation on the semaphore
­ The “v” operation is ReleaseSemaphore
BOOL ReleaseSemaphore(

HANDLE semaphore,
unsigned release_count,
unsigned *previous_count);

© Copyright Ian D. Romanick 2008

23-July-2008

Mutexes

⇨ Mutexes work just like semaphores, but are
binary instead of counting

­ Use CreateMutex to create

­ Use OpenMutex to open

­ Use ReleaseMutex to release
­ Win32 mutexes are recursive

© Copyright Ian D. Romanick 2008

23-July-2008

Critical Sections

⇨ Critical sections look more like traditional locks
­ Unlike mutexes, critical sections are not fair
­ Win32 critical sections are recursive
­ Critical sections must be initialized before use
void InitializeCriticalSection(

LPCRITICAL_SECTION crit_sect);

­ Acquire the “lock” with EnterCriticalSection
void EnterCriticalSection(

LPCRITICAL_SECTION crit_sect);

­ Non-blocking acquire returns false if lock cannot be
acquired

BOOL TryEnterCriticalSection(
LPCRITICAL_SECTION crit_sect);

© Copyright Ian D. Romanick 2008

23-July-2008

Critical Sections

⇨ Critical sections look more like traditional locks
­ Release lock with ReleaseCriticalSection
void LeaveCriticalSection(

LPCRITICAL_SECTION crit_sect);

­ Destroy lock with DeleteCriticalSection
void DeleteCriticalSection(

LPCRITICAL_SECTION crit_sect);

© Copyright Ian D. Romanick 2008

23-July-2008

Kernel Object vs. Per-process Object

⇨ Semaphores and mutexes are kernel objects
­ Can be used to synchronize across process

boundaries
­ Each operation has to go into the kernel

­ Expensive!

­ Multi-threaded, single process programs should prefer
critical sections instead

­ Assuming the lack of fairness is acceptable

© Copyright Ian D. Romanick 2008

23-July-2008

Condition Variables

⇨ Windows only has native condition variables on
Vista

­ In some cases events might be sufficient
­ In other cases a custom condition variable

implementation must be created
­ Can use the “simple” implementation from earlier in the

presentation
­ More efficient, complex implementations exist...see:

­ http://www.cs.wustl.edu/~schmidt/win32-cv-1.html

­ Search for “lock-free win32 condvar” messages by SenderX

http://www.cs.wustl.edu/~schmidt/win32-cv-1.html

© Copyright Ian D. Romanick 2008

23-July-2008

Next week...

⇨ Quiz #1
⇨ Program decomposition

­ Task decomposition
­ Data decomposition
­ Data flow decomposition

⇨ Parallel algorithm structure patterns
­ Task-level parallelism
­ Divide and conquer
­ Geometric decomposition
­ Pipeline
­ Wavefront

© Copyright Ian D. Romanick 2008

23-July-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

